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We present 10 new equilibrium solutions to plane Couette flow in small periodic cells
at low Reynolds number Re and two new travelling-wave solutions. The solutions are
continued under changes of Re and spanwise period. We provide a partial classification
of the isotropy groups of plane Couette flow and show which kinds of solutions
are allowed by each isotropy group. We find two complementary visualizations
particularly revealing. Suitably chosen sections of their three-dimensional physical
space velocity fields are helpful in developing physical intuition about coherent
structures observed in low-Re turbulence. Projections of these solutions and their
unstable manifolds from their ∞-dimensional state space on to suitably chosen two-
or three-dimensional subspaces reveal their interrelations and the role they play in
organizing turbulence in wall-bounded shear flows.

1. Introduction
In Gibson, Halcrow & Cvitanović (2008) we formed visualizations of the

∞-dimensional state-space dynamics of moderate-Re turbulent flows, using precisely
calculated equilibrium solutions of the Navier–Stokes equations to define dynamically
invariant, intrinsic and representation-independent coordinate frames. These state-
space portraits (figure 1) offer a visualization of the dynamics of transitionally
turbulent flows, complementary to three-dimensional visualizations of the spatial
features of velocity fields (figure 2). Side-by-side animations of the two visualizations
illustrate their complementary strengths (see the online simulations of Gibson
2008b). In these animations, three-dimensional spatial visualization of instantaneous
velocity fields helps elucidate the physical processes underlying the formation of
unstable coherent structures, such as the self-sustained process (SSP) theory of
Waleffe (1990, 1995, 1997). Running concurrently, the ∞-dimensional state-space
representation enables us to track the unstable manifolds of equilibria and the
heteroclinic connections between them (Halcrow et al. 2009) and provides us with
new insight into the nonlinear state-spacegeometry and dynamics of moderate-Re
wall-bounded flows.

Here we continue our investigation of equilibrium and travelling-wave solutions of
Navier–Stokes equations, presenting 10 new equilibrium solutions and 2 new travelling
waves of plane Couette flow and continuing the solutions as functions of Re and
periodic cell size [Lx, 2, Lz]. Nagata found the first pair of non-trivial equilibria
(Nagata 1990) and the first travelling wave in plane Couette flow (Nagata 1997).
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Figure 1. A three-dimensional projection of the ∞-dimensional state space of plane Couette
flow in the periodic cell ΩGHC = [2π/1.14, 2, 2π/1.5] at Re = 400, showing all equilibria and
travelling waves discussed in § 4. Equilibria are marked as follows: �, EQ0 (laminar flow);
�, EQ1; �, EQ2; �, EQ3; �, EQ4; �, EQ5; �, EQ7; �, EQ8; �, EQ9; �, EQ10; 	, EQ11;

, EQ12; and �, EQ13. Travelling waves trace out closed orbits: the spanwise-travelling TW 1

(horizontal loops), streamwise TW2 (short vertical lines) and TW3 (longer vertical lines). In this
projection the latter two streamwise travelling waves appear as line segments. The EQ1 → EQ0
heteroclinic connections and the S-invariant portion of the EQ1 and EQ2 unstable manifolds
are shown with solid lines. The cloud of dots are temporally equispaced points on a long
transiently turbulent trajectory, indicating the natural measure. The projection is onto the
translational basis (3.13) constructed from equilibrium EQ2.
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Figure 2. A snapshot of a typical turbulent state in a large aspect-ratio cell
[Lx, 2, Lz] = [15, 2, 15], Re =400. The walls at y = ±1 move away/towards the viewer at
equal and opposite velocities U = ±1. The greyscale indicates the streamwise (u, or x direction)
velocity of the fluid: light grey shows fluid moving at u =+1 at u = −1 dark grey. The shading
as a function of u is indicated by the laminar equilibrium in figure 4. Arrows indicate in-plane
velocity in the respective planes: [v,w] in (y, z) planes, etc. The top half of the fluid is cut
away to show the [u,w] velocity in the y = 0 midplane. See Gibson (2008b) for movies of the
time evolution of such states.

Clever & Busse (1992) found closely related equilibria in plane Couette flow
with Rayleigh–Bénard convection. Cherhabili & Ehrenstein (1997) reported two-
dimensional equilibria of plane Couette, but these were later shown to be artefacts
of the truncation (Rincon 2007; Ehrenstein, Nagata & Rincon 2008). Waleffe (1998,
2003) computed the Nagata equilibria guided by the SSP theory and showed that
they were insensitive to the boundary conditions at the wall. Other travelling waves
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were computed by Jiménez et al. (2005) and Viswanath (2008). Schmiegel (1999)
computed and investigated a large number of equilibria. His 1999 PhD dissertation
provides a wealth of ideas and information on solutions to plane Couette flow, and
in many regards the published literature is still catching up with this work. Gibson
et al. (2008) added the dynamically important uNB equilibrium (labelled EQ4 in this
paper). Parallel theoretical advances have been made in channel and pipe flows,
with the discovery of travelling waves in channel flows (Waleffe 2001) and travelling
waves (Faisst & Eckhardt 2003; Wedin & Kerswell 2004; Pringle & Kerswell 2007)
and relative periodic orbits (Duguet, Pringle & Kerswell 2008) in pipes. Moreover,
travelling waves have been observed experimentally in turbulent pipe flow (Hof et al.
2004). We refer the reader to Gibson et al. (2008) for a more detailed review.

We review plane Couette flow in § 2. The main advances reported in this paper are
a classification of plane Couette symmetry groups that support equilibria (§ 3), the
determination of a number of new equilibria and travelling waves of plane Couette
flow (§ 4) and continuation of these solutions in Reynolds number and spanwise aspect
ratio (§ § 5 and 6). Outstanding challenges are discussed in § 7. Detailed numerical
results such as stability eigenvalues and symmetries of corresponding eigenfunctions
are given in Halcrow (2008), while the complete data sets for the invariant solutions
can be downloaded from channelflow.org.

2. Plane Couette flow – a review
Plane Couette flow is comprised of an incompressible viscous fluid confined between

two infinite parallel plates moving in opposite directions at constant velocities, with no-
slip boundary conditions imposed at the walls. The plates move along the streamwise
or x direction, the wall-normal direction is y, and the spanwise direction is z. The fluid
velocity field is u(x) = [u, v, w](x, y, z). We define the Reynolds number as Re = Uh/ν,
where U is half the relative velocity of the plates, h is half the distance between the
plates and ν is the kinematic viscosity. After non-dimensionalization, the plates are
positioned at y = ±1 and move with velocities u = ±1 x̂, and the Navier–Stokes
equations are

∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇2u, ∇ · u = 0. (2.1)

We seek spatially periodic equilibrium and travelling-wave solutions to (2.1) for the
domain Ω = [0, Lx] × [−1, 1] × [0, Lz] (or Ω = [Lx, 2, Lz]), with periodic boundary
conditions in x and z. Equivalently, the spatial periodicity of solutions can be specified
in terms of their fundamental wavenumbers α and γ . A given solution is compatible
with a given domain if α = m2π/Lx and γ = n2π/Lz for integers m, n. In this study
the spatial mean of the pressure gradient is held fixed at zero.

Most of this study is conducted at Re = 400 in one of the two small aspect-ratio cells,

ΩGHC = [2π/1.14, 2, 2π/2.5] ≈ [5.51, 2, 2.51] ≈ [190, 68, 86] wall units,
(2.2)

ΩHKW = [2π/1.14, 2, 2π/1.67] ≈ [5.51, 2, 3.76] ≈ [190, 68, 128] wall units,

where the wall units are in relation to a mean shear rate of 〈∂u/∂y〉 = 2.9 in
non-dimensionalized units computed for a large aspect-ratio simulation at Re = 400.
Empirically, at this Reynolds number the ΩHKW cell sustains turbulence for very
long times (Hamilton, Kim & Waleffe 1995), whereas the ΩGHC cell exhibits only
short-lived transient turbulence (Gibson et al. 2008). The z length scale Lz = 4π/5
of ΩGHC was chosen as a compromise between the Lz = 6π/5 of ΩHKW and its
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first harmonic Lz/2 = 3π/5 (Waleffe 2002). Unless stated otherwise, all calculations
are carried out for Re = 400 and the ΩGHC cell. In the notation of this paper, the
solutions presented in Nagata (1990) have wavenumbers (α, γ ) = (0.8, 1.5) and fit
in the cell [2π/0.8, 2, 2π/1.5] ≈ [7.85, 2, 4.18]. (Note also that Reynolds number in
Nagata 1990 is based on the full wall separation and the relative wall velocity, making
it a factor of four larger than the Reynolds number used in this paper.) Waleffe
(2003) showed that these solutions first appear at critical Reynolds number of 127.7
and (α, γ ) = (0.577, 1.15). The Schmiegel (1999) study of plane Couette solutions and
their bifurcations was conducted in the cell of size Ω = [4π, 2, 2π] ≈ [12.57, 2, 6.28].

Although the aspect ratios studied in this paper are small, the three-dimensional
states explored by equilibria and their unstable manifolds explored here are strikingly
similar to typical states in larger aspect-ratio cells, such as in figure 2. Kim, Kline &
Reynolds (1971) observed that streamwise instabilities give rise to pairwise counter-
rotating rolls whose spanwise separation is approximately 100 wall units. These rolls,
in turn, generate streamwise streaks of high- and low-speed fluid, by convecting fluid
alternately away from and towards the walls. The streaks have streamwise instabilities
whose length scale is roughly twice the roll separation. These ‘coherent structures’
are prominent in numerical and experimental observations (see figure 2 of this paper
and the animations in Gibson 2008b), and they motivate our investigation of how
equilibrium and travelling-wave solutions of the Navier–Stokes equations change with
Re and cell size.

Fluid states are characterized by their energy E = (1/2)‖u‖2 and energy dissipation
rate D = ‖∇ × u‖2, defined in terms of the inner product and norm,

(u, v) =
1

V

∫
Ω

dx u · v, ‖u‖2 = (u, u). (2.3)

The rate of energy input is I =1/(LxLz)
∫ ∫

dxdz ∂u/∂y, where the integral is taken
over the upper and lower walls at y = ±1. Normalization of these quantities is set
so that I =D =1 for laminar flow and Ė = I − D. It is often convenient to consider
fields as differences from the laminar flow, since these differences constitute a vector
space, and thus can be added together, multiplied by scalars, etc. We indicate such
differences with tildes: ũ = u − y x̂. Note that the total velocity field u does not form
a vector space: the sum of any two total plane Couette velocity fields violates the
u = ±1 boundary conditions at the moving walls.

3. Symmetries and isotropy subgroups
On an infinite domain and in the absence of boundary conditions, the Navier–

Stokes equations are equivariant under any three-dimensional translation, three-
dimensional rotation and x → −x, u → −u inversion through the origin (Frisch
1996). In plane Couette flow, the counter-moving walls restrict the rotation symmetry
to rotation by π about the z-axis. We denote this rotation by σx and the inversion
through the origin by σxz. The suffixes indicate which of the homogeneous directions
x, z changes sign and simplify the notation for the group algebra of rotation, inversion
and translations presented in § 3.1 and § 3.2. The σxz and σx symmetries generate a
discrete dihedral group D1 × D1 = {e, σx, σz, σxz} of order four, where

σx [u, v, w](x, y, z) = [−u, −v, w](−x, −y, z),

σz [u, v, w](x, y, z) = [u, v, −w](x, y, −z),

σxz [u, v, w](x, y, z) = [−u, −v, −w](−x, −y, −z).

⎫⎪⎬
⎪⎭ (3.1)
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The walls also restrict the translation symmetry to two-dimensional in-plane
translations. With periodic boundary conditions, these translations become the
SO(2)x ×SO(2)z continuous two-parameter group of streamwise–spanwise translations,

τ (	x, 	z)[u, v, w](x, y, z) = [u, v, w](x + 	x, y, z + 	z). (3.2)

The equations of plane Couette flow are thus equivariant under the group Γ = O(2)x ×
O(2)z = D1,x � SO(2)x × D1,z � SO(2)z, where � stands for a semi-direct product, and
the subscript x indicates streamwise translations and sign changes in x and y, and
the subscript z indicates spanwise translations and sign changes in z.

The solutions of an equivariant system can satisfy all of the system’s symmetries,
a proper subgroup of them, or have no symmetry at all. For a given solution u, the
subgroup that contains all symmetries that fix u (i.e. that satisfy su = u) is called
the isotropy (or stabilizer) subgroup of u (Marsden & Ratiu 1999; Golubitsky &
Stewart 2002; Hoyle 2006; Gilmore & Letellier 2007). For example a typical turbulent
trajectory u(x, t) has no symmetry beyond the identity, so its isotropy group is {e}. At
the other extreme is the laminar equilibrium, whose isotropy group is the full plane
Couette symmetry group Γ .

In between, the isotropy subgroup of the Nagata equilibria and most of the
equilibria reported here is S = {e, s1, s2, s3}, where

s1 [u, v, w](x, y, z) = [u, v, −w](x + Lx/2, y, −z),

s2 [u, v, w](x, y, z) = [−u, −v, w](−x + Lx/2, −y, z + Lz/2),

s3 [u, v, w](x, y, z) = [−u, −v, −w](−x, −y, −z + Lz/2).

⎫⎪⎬
⎪⎭ (3.3)

These particular combinations of flips and shifts match the symmetries of instabilities
of streamwise-constant streaky flow (Waleffe 1997, 2003) and are well suited to the
wavy streamwise streaks observable in figure 2, with suitable choice of Lx and Lz.
But S is one choice among a number of intermediate isotropy groups of Γ , and other
subgroups might also play an important role in the turbulent dynamics. In this section
we provide a partial classification of the isotropy groups of Γ , sufficient to classify all
currently known invariant solutions and to guide the search for new solutions with
other symmetries. We focus on isotropy groups involving at most half-cell shifts. The
main result is that among these, up to conjugacy in spatial translation, there are only
five isotropy groups in which we should expect to find equilibria.

3.1. Flips and half-shifts

A few observations will be useful in what follows. First, we note the key role played
by the rotation and reflection symmetries σx and σz (3.1) in the classification of
solutions and their isotropy groups. The equivariance of plane Couette flow under
continuous translations allows for travelling-wave solutions, i.e.solutions that are
steady in a frame moving with a constant velocity in (x, z). In state space, travelling
waves either trace out circles or wind around tori, and these sets are both continuous-
translation and time invariant. The sign changes under σx , σz and σxz, however, imply
particular centres of symmetry in x, z and both x and z, respectively, and thus fix the
translational phases of fields that are fixed by these symmetries. Thus the presence of
σx or σz in an isotropy group prohibits travelling waves in x or z, and the presence
of σxz prohibits any form of travelling wave. Guided by this observation, we will seek
equilibria only for isotropy subgroups that contain the σxz inversion symmetry.

Second, the periodic boundary conditions impose discrete translation symmetries
of τ (Lx, 0) and τ (0, Lz) on velocity fields. In addition to this full-period translation
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symmetry, a solution can also be fixed under a rational translation, such as
τ (mLx/n, 0), or a continuous translation τ (	x, 0). If a field is fixed under continuous
translation, it is constant along the given spatial variable. If it is fixed under
rational translation τ (mLx/n, 0), it is fixed under τ (mLx/n, 0) for m ∈ [1, n − 1]
as well, provided that m and n are relatively prime. For this reason the subgroups
of the continuous translation SO(2)x consist of the discrete cyclic groups Cn,x for
n=2, 3, 4, . . . , together with the trivial subgroup {e} and the full group SO(2)x itself,
and similarly for z. For rational shifts 	x/Lx = m/n we simplify the notation a bit by
rewriting (3.2) as

τm/n
x = τ (mLx/n, 0), τm/n

z = τ (0, mLz/n). (3.4)

Since m/n= 1/2 will loom large in what follows, we omit exponents of 1/2:

τx = τ 1/2
x , τz = τ 1/2

z , τxz = τxτz. (3.5)

If a field u is fixed under a rational shift τ (Lx/n), it is periodic on the smaller spatial
domain x ∈ [0, Lx/n]. For this reason we can exclude from our searches all equilibrium
whose isotropy subgroups contain rational translations in favour of equilibria
computed on smaller domains. However, as we need to study bifurcations into
states with wavelengths longer than the initial state, the linear stability computations
need to be carried out in the full [Lx, 2, Lz] cell. For example if EQ is an equilibrium
solution in the Ω1/3 = [Lx/3, 2, Lz] cell, we refer to the same solution repeated thrice
in Ω =[Lx, 2, Lz] as ‘spanwise-tripled’ or 3 × EQ. Such solution is by construction
fixed under the C3,x = {e, τ 1/3

x , τ 2/3
x } subgroup.

Third, some isotropy groups are conjugate to each other under symmetries of the
full group Γ . Subgroup H ′ is conjugate to H (H ′ 
 H ) if there is an s ∈ Γ for which
H ′ = s−1Hs. In spatial terms, two conjugate isotropy groups are equivalent to each
other under a coordinate transformation. A set of conjugate isotropy groups forms
a conjugacy class. It is necessary to consider only a single representative of each
conjugacy class; solutions belonging to conjugate isotropy groups can be generated
by applying the symmetry operation of the conjugacy.

In the present case conjugacies under spatial translation symmetries are particularly
important. Note that O(2) is not an abelian group, since reflections σ and translations
τ along the same axis do not commute (Harter 1993). Instead we have στ = τ−1σ .
Rewriting this relation as στ 2 = τ−1στ , we note that

σxτx(	x, 0) = τ−1(	x/2, 0) σx τ (	x/2, 0). (3.6)

The right-hand side of (3.6) is a similarity transformation that translates the origin
of coordinate system. For 	x = Lx/2 we have

τ−1/4
x σx τ 1/4

x = σxτx, (3.7)

and similarly for the spanwise shifts and reflections. Thus for each isotropy group
containing the shift-reflect σxτx symmetry, there is a simpler conjugate isotropy group
in which σxτx is replaced by σx (and similarly for σzτz and σz). We choose as the
representative of each conjugacy class the simplest isotropy group, in which all such
reductions have been made. However, if an isotropy group contains both σx and
σxτx , it cannot be simplified this way, since the conjugacy simply interchanges the
elements.

Fourth, for 	x = Lx , we have τ−1
x σx τx = σx, so that in the special case of half-cell

shifts, σx and τx commute. For the same reason, σz and τz commute, so the order-16
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isotropy subgroup

G = D1,x × C2,x × D1,z × C2,z ⊂ Γ (3.8)

is abelian.

3.2. The 67-fold path

We now undertake a partial classification of the lattice of isotropy subgroups of plane
Couette flow. We focus on isotropy groups involving at most half-cell shifts, with
SO(2)x ×SO(2)z translations restricted to order-four subgroup of spanwise–streamwise
translations (3.5) of half the cell length,

T = C2,x × C2,z = {e, τx, τz, τxz}. (3.9)

All such isotropy subgroups of Γ are contained in the subgroup G (3.8). Within G,
we look for the simplest representative of each conjugacy class, as described above.

Let us first enumerate all subgroups H ⊂ G. The subgroups can be of order
|H| = {1, 2, 4, 8, 16}. A subgroup is generated by multiplication of a set of generator
elements, with the choice of generator elements unique up to a permutation of
subgroup elements. A subgroup of order |H| = 2 has only one generator, since every
group element is its own inverse. There are 15 non-identity elements in G to choose
from, so there are 15 subgroups of order 2. Subgroups of order 4 are generated by
multiplication of two group elements. There are 15 choices for the first and 14 choices
for the second. However, each order-four subgroup can be generated by 3×2 different
choices of generators. For example any two of τx, τz, τxz in any order generate the
same group T . Thus there are (15 × 14)/(3 × 2) = 35 subgroups of order four.

Subgroups of order eight have three generators. There are 15 choices for the first
generator, 14 for the second and 12 for the third. There are 12 choices for the
third generator and not 13, since if it were chosen to be the product of the first
two generators, we would get a subgroup of order 4. Each order-eight subgroup
can be generated by 7 × 6 × 4 different choices of three generators, so there are
(15 × 14 × 12)/(7 × 6 × 4) = 15 subgroups of order eight. In summary the following
can be said: there is the group G itself, of order 16, 15 subgroups of order 8, 35 of
order 4, 15 of order 2 and 1 (the identity) of order 1 or 67 subgroups in all (Halcrow
2008). This is whole lot of isotropy subgroups to juggle; fortunately, the observations
of § 3.1 show that there are only five distinct conjugacy classes in which we can expect
to find equilibria.

The 15 order-two groups fall into eight distinct conjugacy classes, under conjugacies
between σxτx and σx and σzτz and σz. These conjugacy classes are represented
by the eight isotropy groups generated individually by the eight generators
σx, σz, σxz, σxτz, σzτx, τx, τz and τxz. Of these, the latter three imply periodicity
on smaller domains. Of the remaining five, σx and σxτz allow travelling waves in z

and σz and σzτx allow travelling waves in x. Only a single conjugacy class, represented
by the isotropy group

{e, σxz}, (3.10)

breaks both continuous translation symmetries. Thus, of all order-two isotropy groups,
we expect only this group to have equilibria. EQ9, EQ10and EQ11 described below are
examples of equilibria with isotropy group {e, σxz}.

Of the 35 subgroups of order four, we need to identify those that contain σxz and
thus support equilibria. We choose as the simplest representative of each conjugacy
class the isotropy group in which σxz appears in isolation. Four isotropy subgroups
of order four are generated by picking σxz as the first generator and σz, σzτx, σzτz or
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σzτxz as the second generator (R for reflect–rotate):

R = {e, σx, σz, σxz} = {e, σxz} × {e, σz},
Rx = {e, σxτx, σzτx, σxz} = {e, σxz} × {e, σxτx},
Rz = {e, σxτz, σzτz, σxz} = {e, σxz} × {e, σzτz},
Rxz = {e, σxτxz, σzτxz, σxz} = {e, σxz} × {e, σzτxz} 
 S.

⎫⎪⎬
⎪⎭ (3.11)

These are the only isotropy groups of order four containing σxz and no isolated
translation elements. Together with {e, σxz}, these five isotropy subgroups represent
the five conjugacy classes in which expect to find equilibria.

The Rxz isotropy subgroup is particularly important, as the equilibria of Nagata
(1990) belong to this conjugacy class (Clever & Busse 1997; Waleffe 1997, 2003), as
do most of the solutions reported here. The NBC isotropy subgroup of Schmiegel
(1999) and S of Gibson et al. (2008) are conjugate to Rxz under quarter-cell coordinate
transformations. In keeping with previous literature, we often represent this conjugacy
class with S = {e, s1, s2, s3} = {e, σzτx, σxτxz, σxzτz} rather than the simpler conjugate
group Rxz. Schmiegel’s I isotropy group is conjugate to our Rz; the work of Schmiegel
(1999) contains many examples of Rz-isotropic equilibria. R-isotropic equilibria were
found by Tuckerman & Barkley (2002) for plane Couette flow in which the translation
symmetries were broken by a streamwise ribbon. We have not searched for Rx-
isotropic solutions and are not aware of any published in the literature.

The remaining subgroups of orders four and eight all involve {e, τi} factors and thus
involve states that are periodic on half-domains. For example the isotropy subgroup
of EQ7 and EQ8 studied below is S×{e, τxz} 
 R×{e, τxz}, and thus these are doubled
states of solutions on half-domains. For the detailed count of all 67 subgroups, see
Halcrow (2008).

3.3. State-space visualization

Gibson et al. (2008) presented a method for visualizing low-dimensional projections
of trajectories in the infinite-dimensional state space of the Navier–Stokes equations
(see figure 3). Briefly, we construct an orthonormal basis {e1, e2, . . . , en} that spans
a set of physically important fluid states ũA, ũB , . . . , such as equilibrium states and
their eigenvectors, and we project the evolving fluid state ũ(t) = u(t) − y x̂ on to this
basis using the L2 inner product (2.3). This produces a low-dimensional projection,

a(t) = (a1, a2, . . . , an)(t), an(t) = (ũ(t), en), (3.12)

which can be viewed in two-dimensional planes {em, en} or in three-dimensional
perspective views {e	, em, en}. The state-space portraits are dynamically intrinsic,
since the projections are defined in terms of intrinsic solutions of the equations of
motion, and representation independent, since the inner product (2.3) projection is
independent of the numerical or experimental representation of the fluid state data.
Such bases are effective because moderate-Re turbulence explores a small repertoire
of unstable coherent structures (rolls, streaks, their mergers), so that the trajectory
a(t) does not stray far from the subspace spanned by the key structures.

There is no a priori prescription for picking a ‘good’ set of basis fluid states, and
construction of {en} set requires some experimentation. Let the S-invariant subspace
be the flow-invariant subspace of states u that are fixed under S; this consists of all
states whose isotropy group is S or contains S as a subgroup. The plane Couette
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Figure 3. Four projections of equilibria, travelling waves and their half-cell shifts onto
translational basis (3.13) constructed from equilibrium EQ4. Equilibria are marked as follows:
�, EQ0; �, EQ1; �, EQ2; �, EQ3; �, EQ4; �, EQ5; �, EQ7; �, EQ9; �, EQ10; 	, EQ11; 
, EQ12;
and �, EQ13. Travelling waves trace out closed loops. In some projections the loops appear as
line segments or points. TW1 is a spanwise-travelling, symmetry-breaking bifurcation off EQ1,
so it passes close to different translational phases of EQ1 (�). Similarly, TW3 bifurcates off
EQ3 (�) and so passes near its translations. TW2 was not discovered through bifurcation (see
§ 4); it appears as the shorter, isolated line segment in (a1, a4) and (a2, a4). The EQ1 → EQ0
relaminarizing heteroclinic connections are marked by dashed lines. A long-lived transiently
turbulent trajectory is plotted with a dotted line. The EQ4-translational basis was chosen
here, since it displays the shape of travelling waves more clearly than the projection on the
EQ2-translational basis of figure 1.

system at hand has a total of 31 known equilibria within the S-invariant subspace:
four translated copies each of EQ1–EQ6 and two translated copies each of EQ7 and
EQ8 (which have an additional τxz symmetry), plus the laminar equilibrium EQ0 at
the origin. As shown in Gibson et al. (2008), the dynamics of different regions of state
space can be elucidated by projections on to basis sets constructed from combinations
of equilibria and their eigenvectors.

In this paper we present global views of all invariant solutions in terms of the
orthonormal ‘translational basis’ constructed in Gibson et al. (2008) from the four
translated copies of EQ2:

τx τz τxz

e1 = c1(1 + τx + τz + τxz) ũEQ2 + + +,

e2 = c2(1 + τx − τz − τxz) ũEQ2 + − −,

e3 = c3(1 − τx + τz − τxz) ũEQ2 − + −,

e4 = c4(1 − τx − τz + τxz) ũEQ2 − − +,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.13)
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where cn is a normalization constant determined by ‖en‖ = 1. The last three columns
indicate the symmetry of the basis vector under half-cell translations; e.g. ±1 in the
τx column implies τxej = ±ej .

4. Equilibria and travelling waves of plane Couette flow
We seek equilibrium solutions to (2.1) of the form u(x, t) = uEQ(x) and travelling-

wave or relative equilibrium solutions of the form u(x, t) = uTW(x − ct) with
c = (cx, 0, cz). Let FNS (u) represent the Navier–Stokes equations (2.1) for the given
geometry, boundary conditions and Reynolds number, and f t

NS its time-t forward
map,

∂u
∂t

= FNS (u), f t
NS (u) = u +

∫ t

0

dτ FNS (u(τ )). (4.1)

Then for any fixed T > 0, equilibria satisfy f T (u) − u = 0 and travelling waves satisfy
f T (u) − τ u = 0, where τ = τ (cxT , czT ). When u is approximated with a finite spectral
expansion and f t with a numerical simulation algorithm, these equations become
a set of nonlinear equations in the expansion coefficients for u and, in the case of
travelling waves, the wave velocities (cx, 0, cz).

Viswanath (2007) presented an algorithm for computing solutions to these equations
based on Newton search, Krylov subspace methods and an adaptive ‘hookstep’ trust-
region limitation to the Newton steps. This algorithm can provide highly accurate
solutions from even poor initial guesses. The high accuracy stems from the use of
Krylov subspace methods, which can be efficient with 105 or more spectral expansion
coefficients. The robustness with respect to initial guess stems from the hookstep
algorithm. The hookstep limitation restricts steps to a radius r of estimated validity
for the local linear approximation to the Newton equations. As r increases from zero,
the direction of the hookstep varies smoothly from the gradient of the residual within
the Krylov subspace to the Newton step, so that the hookstep algorithm behaves as
a gradient descent when far away from a solution and as the Newton method when
near, thus greatly increasing the algorithm’s region of convergence around solutions,
compared to the Newton method (Dennis & Schnabel 1996).

The choice of initial guesses for the search algorithm is one of the main differences
between this study and previous calculations of equilibria and travelling waves of
shear flows. Prior studies have used homotopy, that is starting from a solution to a
closely related problem and following it through small steps in parameter space to
the problem of interest. Equilibria for plane Couette flow have been continued from
Taylor–Couette flow (Nagata 1990), Rayleigh–Bénard flow (Clever & Busse 1997)
and plane Couette with imposed body forces (Waleffe 1998). Equilibria and travelling
waves have also been found using ‘edge-tracking’ algorithms, that is by adjusting the
magnitude of a perturbation of the laminar flow until it neither decays to laminar nor
grows to turbulence but instead converges towards a nearby weakly unstable solution
(Itano & Toh 2001; Skufca, Yorke & Eckhardt 2006; Schneider et al. 2008; Viswanath
2008). In this study, we take as initial guesses samples of velocity fields generated by
long-time simulations of turbulent dynamics. The intent is to find the dynamically
most important solutions, by sampling the turbulent flow’s natural measure.

We discretize u with a spectral expansion of the form

u(x) =

J∑
j=−J

K∑
k=−K

L∑
	=0

ujkl T	(y) e2πi(jx/Lx+kz/Lz), (4.2)
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Re ‖·‖ E D H dimWu dim Wu
H Accuracy Frequency

Mean 0.2828 0.087 2.926
EQ0 0 0.1667 1 Γ 0 0 2
EQ1 0.2091 0.1363 1.429 S 1 1 10−6 7
EQ2 0.3858 0.0780 3.044 S 8 2 10−4 3
EQ3 0.1259 0.1382 1.318 S 4 2 10−4 2
EQ4 0.1681 0.1243 1.454 S 6 3 10−4 8
EQ5 0.2186 0.1073 2.020 S 11 4 10−3 1
EQ6 330 0.2751 0.0972 2.818 S 19 6 10−3

EQ7 0.0935 0.1469 1.252 S × {e, τxz} 3 1 10−4 3
EQ8 0.1756 0.1204 1.770 S × {e, τxz} 15 2 10−3

EQ9 0.1565 0.1290 1.404 {e, σxz} 5 3 10−4 1
EQ10 0.3285 0.1080 2.373 {e, σxz} 10 7 10−4

EQ11 0.4049 0.0803 3.432 {e, σxz} 13 10 10−4

EQ12 0.3037 0.1159 2.071 {e, σxz} 5 4 10−5

EQ13 0.4049 0.0813 3.361 {e, σxz} 15 9 10−3

Table 1. Properties of equilibrium solutions for ΩGHC cell; Re= 400, unless noted otherwise.
The mean values are ensemble and time averages over transient turbulence; ‖·‖ is the L2-norm
of the velocity deviation from laminar; E is the energy density (2.3); D is the dissipation rate;
H is the isotropy subgroup; dimWu is the dimension of the equilibrium’s unstable manifold
or the number of its unstable eigenvalues; and dim Wu

H is the dimensionality of the unstable
manifold within the H -invariant subspace or the number of unstable eigenvalues with the
same symmetries as the equilibrium. The accuracy of the solution at a given resolution (a
32×33×32 grid) is estimated by the magnitude of the residual ‖(f T =1(u) − u)‖/‖u‖ when the
solution is interpolated and integrated at higher resolution (a 48×49×48 grid, �t = 0.02). The
frequency column shows how many times a solution was found among the 28 searches initiated
with samples of the natural measure within the S-invariant subspace. (See also figure 8 a.)

where T	 represents Chebyshev polynomials. Time integration of f t is performed
with a primitive-variables Chebyshev-tau algorithm with tau correction, influence-
matrix enforcement of boundary conditions, third-order semi-implicit backwards-
differentiation time stepping and dealiasing in x and z (Kleiser & Schumann
1980; Canuto et al. 1988; Peyret 2002). We eliminate from the search space
the linearly dependent spectral coefficients of u that arise from incompressibility,
boundary conditions and complex conjugacies that arise from the real-valuedness of
velocity fields. Our codes for Navier–Stokes integration, Newton–hookstep search,
parametric continuation and eigenvalue calculation are available for download from
channelflow.org (Gibson 2008a), along with a database of all solutions described in
this paper. For further details on the numerical methods see Gibson et al. (2008) and
Halcrow (2008).

Solutions presented in this paper use spatial discretization (4.2) with
(J, K, L) = (15, 15, 32) (or 32 × 33 × 32 gridpoints) and roughly 60 000 expansion
coefficients, and integration is performed with a time step of �t = 0.03125. The
estimated accuracy of each solution is listed in table 1. As is clear from the PhD
thesis of Schmiegel (1999), ours is almost certainly an incomplete inventory. While
for any finite-Re, finite aspect-ratio cell the number of distinct equilibrium and
travelling-wave solutions is finite, we know of no way of determining or bounding
this number. It is difficult to compare our solutions directly to those of Schmiegel,
since those solutions were computed in a [4π, 2, 2π] cell (roughly twice our cell
size in both spanwise and streamwise directions) and with lower spatial resolution
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EQ0 EQ1 EQ2

EQ4 EQ5 EQ8

EQ9 EQ10 EQ11

Figure 4. Equilibrium solutions of plane Couette flow in ΩGHC = [2π/1.14, 2, 2π/2.5] at
Re = 400. Plotting conventions are the same as figure 2. The greyscale indicates the streamwise
velocity u, with the front face of the laminar solution EQ0, u(y) = y, serving as a reference.
Not all solutions are shown; EQ3, EQ6, EQ7, EQ12 and EQ13 are very similar to EQ4, EQ5,
EQ8, EQ10 and EQ11, respectively.

(2212 independent expansion functions versus our 60 000 for a cell of one fourth the
volume).

4.1. Equilibrium solutions

Our primary focus is on the S-invariant subspace (3.3) of the ΩGHC cell at Re= 400.
We initiated 28 equilibrium searches at evenly spaced intervals �t =25 along a
trajectory in the unstable manifold of EQ4 that exhibited turbulent dynamics for 800
non-dimensionalized time units after leaving the neighbourhood of EQ4 and before
decaying to laminar flow. Lower/upper branch pairs are labelled with consecutive
numbers, and the numbers indicate, as closely as possible, the order of discovery.
We give a name EQn to any distinct solution in the ΩGHC cell at Re = 400, although
many of these solutions can be connected by continuation in Re or wavenumber: EQ0

is the laminar equilibrium, EQ1 and EQ2 are the Nagata lower and upper branch,
and EQ4 is the uNB solution reported in Gibson et al. (2008). The rest are new.
Figure 4 shows the three-dimensional velocity fields of the equilibria. Figures 5 and
6 show χ-averages of their differences from the laminar solution. Only one of the 28
searches failed to converge on to an equilibrium; the successful searches converged
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EQ2 EQ4 EQ6

EQ1 EQ3 EQ5

Figure 5. Plots of x-average of difference from laminar flow, ũ = u − y x̂, for equilibria
EQ1–EQ6 in the ΩGHC cell. The axes are z (horizontal) and y (vertical). The arrows indicate
[ṽ, w̃], with the same arrow length denoting the same magnitude of in-plane velocity in all
graphs. Contour lines indicate ũ at values ũ = ±(2n+1)/15, with the negative contours dashed
and the positive contours solid. Lower/upper branch pairs are grouped together vertically, e.g.
EQ1, EQ2 are a lower/upper branch pair; Re =400 except for Re= 330 in EQ6.

EQ8 EQ11

EQ7 EQ9 EQ10

Figure 6. Plots of x-average of ũ for equilibria EQ7–EQ11 in the ΩGHC cell at Re= 400.
Plotting conventions are the same as in figure 5.

to equilibria with frequencies listed in table 1. The higher frequency of occurrence of
EQ1 and EQ4 suggests that these are the dynamically most important equilibria in the
S-invariant subspace for the ΩGHC cell at Re =400. Stability eigenvalues of known
equilibria are plotted in figure 7. Tables of stability eigenvalues and other properties
of these solutions are given in Halcrow (2008), while the images, movies and full
data sets are available online at channelflow.org. All equilibrium solutions have zero
spatial-mean pressure gradient, which was imposed in the flow conditions, and, due
to their symmetry, zero mean velocity.

EQ1, EQ2 equilibria. This pair of solutions was discovered by Nagata (1990),
recomputed by different methods by Clever & Busse (1992, 1997) and Waleffe (1998,
2003) and found multiple times in searches initiated from turbulent simulation data,
as described above. The lower branch EQ1 and the upper branch EQ2 are born
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Figure 7. Eigenvalues of equilibria EQ3, EQ4 and EQ7, EQ8 in the ΩGHC cell, Re =400.
Eigenvalues are plotted according to their symmetries: � + + +, the S-invariant subspace;
� + − −, � − + − and � − − +, where ± symbols stand for symmetric/antisymmetric in
s1, s2 and s3 respectively. For EQ1, EQ2 and EQ4 eigenvalues see Gibson et al. (2008; there
referred to as uLB, uUB and uNB, respectively). For numerical values of all stability eigenvalues
see Halcrow (2008) and channelflow.org.

together in a saddle-node bifurcation at Re ≈ 218.5. Just above bifurcation, the two
equilibria are connected by an EQ1 → EQ2 heteroclinic connection (see Halcrow et al.
2009). However, at higher values of Re there appears to be no such simple connection.
The lower branch EQ1 equilibrium is discussed in detail in Wang, Gibson & Waleffe
(2007). This equilibrium has a one-dimensional unstable manifold for a wide range
of parameters. Its stable manifold appears to provide a partial barrier between the
basins of attraction of the laminar state and turbulent states (Schneider et al. 2008).
The upper branch EQ2 has an eight-dimensional unstable manifold and a dissipation
rate that is higher than the turbulent mean (see figure 8a). However, within the
S-invariant subspace EQ2 has just one pair of unstable complex eigenvalues. The
two-dimensional S-invariant section of its unstable manifold was explored in some
detail in Gibson et al. (2008). It appears to bracket the upper end of turbulence in
state space, as illustrated by figure 1.

EQ3, EQ4. The upper branch EQ4 solution was found in Gibson et al. (2008)
and is called uNB there. Its lower branch partner EQ3 was found by continuing
EQ4 downwards in Re and also by independent searches from samples of turbulent
data. EQ4 is, with EQ1, the most frequently found equilibrium, which attests to its
importance in turbulent dynamics. Like EQ1, EQ4 serves as a gatekeeper between
turbulent flow and the laminar basin of attraction. As shown in Gibson et al. (2008),
there is a heteroclinic connection from EQ4 to EQ1 resulting from a complex instability
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Figure 8. Rate of energy input at the walls I versus dissipation D, for equilibria in the (a)
ΩGHC and (b) ΩHKW cells at Re =400. Typical turbulent trajectories marked are with dotted
lines. The laminar equilibrium is denoted by EQ0 (�) with D = I = 1. In (a), EQ1 (�), EQ3 (�),
EQ4 (�), EQ7 (�) and EQ9 (�) are clustered in the range 1.25 < D = I < 1.55, and EQ2 (�),
EQ5 (�), EQ8 (�), EQ10 (�), EQ11 (	), EQ12 (
) and EQ13 (�) lie in 2 < D = I < 4. Travelling
waves TW1, TW2 and TW3 (not shown) are clustered together with EQ1 (�), etc. In (b), the
symbols are the same, with both the lower and upper branches of EQ9 marked with; �, EQ4
(�), EQ2 (�) are clustered together near D = I ≈ 2.47.

of EQ4. Trajectories on one side of the heteroclinic connection decay rapidly to laminar
flow; those one the other side take excursions towards turbulence.

EQ5, EQ6. The lower-branch EQ5 solution was found only once in our 28 searches,
and its upper-branch partner EQ6 only by continuation in Reynolds number. We were
only able to continue EQ6 up to Re = 335. At this value it is highly unstable, with
a 19-dimensional unstable manifold, and it is far more dissipative than a typical
turbulent trajectory.

EQ7, EQ8 appear together in a saddle-node bifurcation in Re (see § 5). EQ7/EQ8

might be the same as the ‘σ solutions’ of Schmiegel (1999). The x-average velocity
field plots appear very similar, as do the D versus Re bifurcation diagrams. We were
not able to obtain Schmiegel’s data in order to make a direct comparison. EQ7 is both
the closest state to laminar in terms of disturbance energy and the lowest in terms of
drag. It has one strongly unstable real eigenvalue within the S-invariant subspace and
two weakly unstable eigenvalues with {s1, s3} and {s2, s3} antisymmetries, respectively.
In this regard, the EQ7 unstable manifold might, like the unstable manifold of EQ1,
form part of the boundary between the laminar basin of attraction and turbulence.
Among the equilibria determined here EQ7 and EQ8 are unique in that they have the
order-eight isotropy subgroup S × {e, τxz} (see § 3.2). The action of the quotient group
G/(S × {e, τxz}) yields two copies of each, plotted in figure 3. The appearance of EQ7

and EQ8 is similar to that of EQ5 and EQ6, except for the additional symmetry.
EQ9 is a single lopsided roll–streak pair. It is produced by a pitchfork bifurcation

from EQ4 at Re ≈ 370 as an {s1, s2}-antisymmetric eigenfunction goes through
marginal stability (the only pitchfork bifurcation we have yet found) and remains
close to EQ4 at Re= 400. Thus, it has {e, σxz} isotropy. Even though EQ9 is not
S-isotropic, we found it from a search initiated on a guess that was S-isotropic to
single precision. Such small asymmetries were enough to draw the Newton–hookstep
search algorithm out of the S-invariant subspace.
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TW1 TW2 TW3

Figure 9. Spanwise TW1 and streamwise TW2 and TW3 travelling waves in ΩGHC cell,
Re =400.

EQ10, EQ11 are produced in a saddle-node bifurcation at Re ≈ 348 as a lower/upper
branch pair, and they lie close to the centre of mass of the turbulent repeller (see
figure 8a). The velocity fields have an appearance similar to that of typical turbulent
states for this cell size. However, they are both highly unstable and unlikely to be
revisited frequently by a generic turbulent fluid state. Their isotropy subgroup {e, σxz}
is order-two, so the action of the quotient group G/{e, τxz} yields eight copies of each,
which appear as the four overlaid pairs in projections on to the (3.13) basis set (see
figures 1 and 3).

EQ12, EQ13 were found by continuation of EQ10 in γ .

4.2. Travelling waves

The first two travelling-wave solutions reported in the literature were found by Nagata
(1997) by continuing EQ1 equilibrium to a combined Couette/Poiseuille channel flow
and then continuing back to plane Couette flow. The result was a pair of streamwise
travelling waves arising from a saddle-node bifurcation. Viswanath (2008) found two
travelling waves, ‘D1’ and ‘D2’, through an edge-tracking algorithm (Skufca et al.
2006; see also § 4.1). Here we verify Viswanath’s D1 solution and present two new
travelling-wave solutions computed as symmetry-breaking bifurcations off equilibrium
solutions. We were not able to compare these to Nagata’s travelling waves, since the
data is not available. The travelling waves are shown as three-dimensional velocity
fields in figure 9 and as closed orbits in state space in figure 3. Their kinetic energies
and dissipation rates are tabulated in table 2. Each travelling-wave solution has a
zero spatial-mean pressure gradient but non-zero mean velocity in the same direction
as the wave velocity. It is likely that each solution could be continued to zero wave
velocity but non-zero spatial-mean pressure gradient.

The TW 1 travelling wave is s2-isotropic and hence spanwise travelling. At Re =400
its velocity is very small, c = 0.00655 ẑ, and it has a small but non-zero mean velocity,
also in the spanwise direction. This is a curious property: TW1 induces bulk transport
of fluid without a pressure gradient, and in a direction orthogonal to the motion
of the walls. TW1 was found as a pitchfork bifurcation from EQ1and thus lies very
close to it in state space. It is weakly unstable, with a three-dimensional unstable
manifold with two eigenvalues which are extremely close to marginal. In this sense
TW1 unstable manifold is nearly one-dimensional and comparable to EQ1.

TW 2 is a streamwise travelling wave found by Viswanath (2008) and called D1
there. It is s1-isotropic and has a low dissipation rate and a small but non-zero mean
velocity in the streamwise direction. Viswanath provided data for this solution; we
verified it with an independent numerical integrator and continued the solution to
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‖·‖ E D H dim Wu dimWu
H c Mean u

Mean 0.2828 0.087 2.926
TW1 0.2214 0.1341 1.510 {e, σxτz} 3 2 0.00655 ẑ 0.00482 ẑ
TW2 0.1776 0.1533 1.306 {e, σzτx} 3 2 0.3959x̂ 0.0879x̂
TW3 0.2515 0.1520 1.534 {e, σzτx} 4 2 0.4646x̂ 0.1532x̂

Table 2. Properties of travelling-wave solutions for ΩGHC cell, Re= 400, defined as in table 1,
with wave velocity c and mean velocity (see also figure 8a).
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Figure 10. (a) Dissipation D of equilibria as a function of Reynolds number for the ΩGHC

cell. The symbols are as follows: �, EQ1; �, EQ2; �, EQ3; �, EQ4; �, EQ5; �, EQ6; �, EQ7;
�, EQ8; �, EQ9; �, EQ10; 	, EQ11; 
, EQ12; �, EQ13; and �, TW1. (b) Detail of (a). EQ1,
EQ2, EQ3, EQ4, EQ7 and EQ9 extend past Re= 1000 (not plotted here).

ΩGHC cell for comparison with the other travelling waves. In this cell TW2 is fairly
stable, with an eigenspectrum similar to that of TW1, except with different symmetries.

TW 3 is an s1-isotropic streamwise travelling wave with a relatively high wave
velocity c = 0.465 x̂ and a non-zero mean velocity in the streamwise direction. Its
dissipation rate and energy norm are close to those of TW1.

5. Continuation under Reynolds number
The relations between the equilibrium and travelling-wave solutions can be clarified

by tracking their properties under changes in Re and spatial periodicity. Figure 10
shows a bifurcation diagram for equilibria and travelling waves in the ΩGHC cell,
with dissipation rate D plotted against Re as the bifurcation parameter. A number
of independent solution curves are shown in superposition. This is a two-dimensional
projection from the ∞-dimensional state space; thus, unless noted otherwise, the
apparent intersections of the solution curves do not represent bifurcations; rather,
each curve is a family of solutions with an upper and a lower branch, beginning with
a saddle-node bifurcation at a critical Reynolds number.

The first saddle-node bifurcation gives birth to the Nagata lower branch EQ1 and
upper branch EQ2 equilibria, at Re ≈ 218.5. EQ1 has a single S-isotropic unstable
eigenvalue (and additional subharmonic instabilities that break the S-isotropy of
EQ1). Shortly after bifurcation, EQ2 has an unstable complex eigenvalue pair within
the S-invariant subspace and two unstable real eigenvalues leading out of that space.
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As indicated by the gentle slopes of their bifurcation curves, the Nagata (1990)
solutions are robust with respect to Reynolds number. The lower branch solution has
been continued past Re= 10 000 and has a single unstable eigenvalue throughout this
range (Wang et al. 2007).

EQ7 and EQ8 are formed in a saddle-node bifurcation at Re ≈ 235. The EQ8

bifurcation curve is unusual in that it increases rapidly from the bifurcation point to
a maximum dissipation of D = 5.2 at Re = 364 and then turns rapidly but smoothly
back down to much lower dissipation at higher Reynolds numbers. This behaviour
persists when examined at higher spatial and temporal resolutions.

EQ3 and EQ4 were discovered in independent Newton searches and subsequently
found by continuation to be lower and upper branches of a saddle-node bifurcation
occurring at Re ≈ 364. EQ3 has a leading unstable complex eigenvalue pair within the
S-invariant subspace. Its remaining two unstable eigendirections are nearly marginal
and lead out of this space.

EQ6 was found by continuing EQ5 backwards in Re around the bifurcation point
at Re ≈ 326. We were not able to continue EQ6 past Re= 335. At this point it has
a nearly marginal stable pair of eigenvectors whose isotropy group is Γ , which
rules out a bifurcation to travelling waves along these modes. Just beyond Re =335
the dynamics in this region appears to be roughly periodic, suggesting that EQ6

undergoes a supercritical Hopf bifurcation here. At Re ≈ 348, EQ10, EQ11 are born
in a saddle-node bifurcation, similar in character to the EQ1/EQ2 bifurcation, as are
EQ12, EQ13.

Figure 10(a) shows several symmetry-breaking bifurcations. At Re ≈ 250, TW1

bifurcates from EQ1 in a subcritical pitchfork, as an s2-symmetric, s1, s3-antisymmetric
eigenfunction of EQ1 becomes unstable, resulting in a spanwise-moving travelling
wave. At Re ≈ 370, the EQ9 equilibrium bifurcates off EQ4 along an s1, s2-
antisymmetric, s3-symmetric eigenfunction of EQ4. Since s3 symmetry fixes phase
in both x and z, this solution bifurcates off EQ4 as an equilibrium rather than a
travelling wave.

Figure 11(a) shows the instability of each equilibrium as a function of Reynolds
number. As a measure of instability we use the sum of the real parts of the
equilibrium’s unstable eigenvalues, i.e. the local exponential rate of stretching of
the equilibrium’s unstable manifold. Several observations can be made. Each lower
branch solution (open symbol) is less unstable than its upper branch counterpart
(closed symbol). Lower branch solutions become less unstable as Reynolds number
increases, and upper branch solutions become more unstable. Since lower/upper
branches of a given solution are defined by lower/higher dissipation rates, this implies
that lower instability and lower dissipation go hand in hand. However this relation
does not generally hold between different solution branches: EQ7 has lower dissipation
than EQ1 (figure 10a) but is more unstable (figure 11a). Several of the lower-branch
solutions have very slowly decreasing instability over the range of Reynolds numbers
shown; for these, the number of unstable eigenvalues is constant or slowly decreasing
as well. EQ1 has three unstable eigenvalues shortly after bifurcation and just one for
270 � Re � 10 000; EQ7 has six after bifurcation and three for 340 � Re � 800;
EQ3 has four from bifurcation onwards, 363.9 � Re � 800; and EQ12 has eight
from bifurcation onwards, 324.4 � Re � 600. The upper limits of these ranges
are merely the endpoints of our calculations. Clever & Busse (1997) show that at
certain wavenumbers, EQ2 is stable for a small range of Reynolds numbers just
after bifurcation. We did not look for or find regions of stability for any of the new
solutions, though we expect such regions exist for carefully tuned parameters. For
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Figure 11. (a) Sum of the real parts of unstable eigenvalues of equilibria as a function of Re,
at α, γ = 1.14, 2.5 (the ΩGHC cell). (b) Dissipation D of equilibria as a function of spanwise
wavenumber γ , with fixed streamwise wavenumber α = 1.14 and Reynolds number Re= 400.
The symbols are as follows: �, EQ1; �, EQ2; �, EQ3; �, EQ4; �, EQ5; �, EQ6; �, EQ7;
�, EQ8; �, EQ9; �, EQ10; 	, EQ11; 
, EQ12; �, EQ13. The vertical dotted line marks the
fundamental wavenumber γ = 1.67 = 2π/Lz of the ΩHKW cell (Lz = 3.76), the dashed line the
fundamental γ = 2.5 of ΩGHC (Lz =2.51) and the dot-dashed line the first harmonic γ = 3.34
of ΩHKW. The intersection of the EQ1, EQ2 curves with γ = 3.34 indicates that these solutions
exist as ‘doubled’ states in the ΩHKW cell, as shown in figure 12. The EQ7 and EQ8 curves join
smoothly near (γ,D) = (2.6, 5.4). We were not able to continue EQ6 (�) past γ = 2.38, nor
EQ4 (�) below γ = 1.64.

example a stable periodic orbit has been found in the related Kuramoto–Sivashinsky
system (Lan & Cvitanović 2008). For the upper branch solutions generally both
the numbers of unstable eigenvalues as well as their sums increase with Re. Lastly,
it should be remembered that it is not at all clear how much the instability of
an equilibrium has to do with the Lyapunov exponents of the turbulent flow – that
depends on how close and how frequently a typical trajectory visits the neighbourhood
of a given equilibrium.

6. Continuation under spanwise wavenumber
In this section we examine changes in solutions under variation in spanwise

periodicity. Figure 11(b) shows the dissipation D of the solutions as a function
of spanwise wavenumber γ . Only a few of the intersections in this plot indicate
bifurcations; the rest are artefacts of the projection on to the (γ, D) plane. The true
bifurcations are EQ11 branching off from EQ2 near (γ, D) = (2, 3); EQ3 from EQ7

near (γ, D) = (2.2, 1.2); and EQ9 from EQ4 near (γ, D) = (2.6, 1.4). Continuation in γ

also shows that the EQ10, EQ11 and EQ12, EQ13 solution curves, which appear to be
independent in figure 10, are connected by a saddle-node bifurcation between EQ10

and EQ12 near (γ, D) = (2.15, 2.05).
In addition to these bifurcations, we are interested in connecting the solutions

for ΩGHC discussed in § 4, to the wider ΩHKW cell of Hamilton et al. (1995), which
empirically exhibits turbulence for long-time scales at Re =400. Of the equilibria
discussed above, only EQ4, EQ7, EQ8 and EQ9 could be continued at Re= 400
from γ =2.5 of ΩGHC down to the fundamental wavenumber γ = 1.67 of ΩHKW.
EQ9 appears in a saddle-node bifurcation just below γ = 1.67. The other equilibria
terminate in saddle-node bifurcations above γ = 1.67 or at bifurcations from other
solution curves. However, the EQ1 and EQ2 solutions can be continued upwards in γ
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‖·‖ E D H dim Wu dimWu
H Accuracy

Mean 0.40 0.15 3.0
EQ0 0 0.1667 1 Γ 0 0
2×EQ1 0.2458 0.1112 1.8122 H 5 3 10−5

2×EQ2 0.3202 0.0905 2.4842 H 6 2 10−5

EQ4 0.2853 0.0992 2.4625 S 40 13 10−3

EQ7 0.1261 0.1433 1.3630 S × {e, τxz} 6 2 10−3

EQ8 0.1969 0.1186 1.7967 S × {e, τxz} 19 1 10−3

EQ9 0.3159 0.1175 2.0900 {e, σxz} 11 0 10−4

EQ9 (upper) 0.3276 0.1119 2.2000 {e, σxz} 16 5 10−4

Table 3. Properties of equilibrium and travelling wave solutions for ΩHKW cell, Re =400,
defined as in table 1. For 2×EQ1and 2×EQ2, H is the eighth-order group generated by τz, σzτx

and σxzτ
1/4
z . (See also figure 8 b.)

2 × EQ1 2 × EQ2 EQ4

EQ9EQ8EQ7

Figure 12. Equilibria in the ΩHKW cell of Hamilton et al. (1995), Re= 400; EQ4, EQ7, EQ9
and the spanwise-doubled equilibrium solutions 2 × EQ1 and 2 × EQ2.

to the first harmonic γ = 3.34 = 2 × π/Lz of ΩHKW (Lz = 1.67). These solutions then
appear in ΩHKW as as spanwise ‘doubled’ states 2×EQ1 and 2×EQ2. Figure 12 shows
three-dimensional velocity fields for equilibria in ΩHKW: EQ4, EQ7, EQ8 and EQ9 and
the spanwise doubled 2 × EQ1 and 2 × EQ2. The upper branch of EQ9 (not shown)
is very similar to EQ9. The properties of these solutions are listed in table 3.

The low dissipation values of the ΩHKW equilibria in figure 8 (b) suggest that
they are not involved in turbulent dynamics, except perhaps as gatekeepers to the
laminar equilibrium. We suspect that equilibria as yet undiscovered or the already
known periodic orbit solutions (Gibson & Cvitanović 2009) do play a key role in
organizing turbulent dynamics. However, unlike the ΩGHC cell, we were not able
to find any equilibria for ΩHKW cell from initial guesses sampled from turbulent
trajectories within the S-invariant subspace. This is curious, contrasted to our success
in finding equilibria from such guesses in ΩGHC , and it suggests that the aspect ratios
of the ΩHKW cell are the most incommensurate (fit the intrinsic widths of rolls least
well) compared to the roll-and streak-scales of spanwise-infinite domains, which are
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apparent (approximately) in the simulation of figure 2. The stability calculations by
Clever & Busse (1997) indicate that the solutions of Nagata prefer a 2:1 streamwise-
to-spanwise aspect ratio. Hence a study of changes in solutions under variation in
both streamwise and spanwise periodicities might shed further light on the physical
nature of these solutions.

7. Conclusion and perspectives
As a turbulent flow evolves, every so often we catch a glimpse of a familiar pattern.

For any finite spatial resolution, the flow approximately follows for a finite time a
pattern belonging to a finite alphabet of admissible fluid states, represented here by
a set of equilibrium and travelling wave solutions of Navier–Stokes. These are not
the ‘modes’ of the fluid; they do not provide a decomposition of the flow into a sum
of components at different wavelengths or a projection basis for low-dimensional
modelling. Each solution spans the whole range of physical scales of the turbulent
fluid, from the outer wall-to-wall scale down to the viscous dissipation scale. Numerical
computations require sufficient resolution to cover all of these scales, so no global
dimension reduction is likely. The role of invariant solutions of Navier–Stokes is,
instead, to partition the ∞-dimensional state space into a finite set of neighbourhoods
visited by a typical long-time turbulent fluid state.

Motivated by the recent observations of recurrent coherent states in experiments
and numerical studies, we undertook here an exploration of the hierarchy of all-
known equilibria and travelling waves of fully resolved plane Couette flow in order
to describe the spatio-temporally chaotic dynamics of transitionally turbulent fluid
flows. Turbulent plane Couette dynamics visualized in state space appears pieced
together from close visitations to coherent states connected by transient interludes, as
can be seen in the animations of Gibson (2008b) in figure 2. The three-dimensional
fluid states explored by the small aspect-ratio equilibria and their unstable manifolds
studied in this paper are strikingly similar to states observed in larger aspect-ratio
simulations, such as figure 2.

For plane Couette flow equilibria, travelling waves and periodic solutions embody
a vision of turbulence as a repertoire of recurrent spatio-temporal patterns explored
by turbulent dynamics. The new equilibria and travelling waves that we present
here form the backbone of this repertoire. Currently, a taxonomy of these myriad
states eludes us, but emboldened by successes in applying periodic orbit theory to
the simpler, warm-up Kuramoto–Sivashinsky problem (Christiansen, Cvitanović &
Putkaradze 1997; Lan & Cvitanović 2008; Cvitanović, Davidchack & Siminos 2009),
we are optimistic. Given a set of equilibria, the next step is to understand how the
dynamics interconnects the neighbourhoods of the invariant solutions discovered so
far; a task that we address in Halcrow et al. (2009), which discusses their heteroclinic
connections, and Gibson & Cvitanović (2009), which discusses their periodic orbit
solutions.

The reader might rightfully wonder what the small-aspect periodic cells studied
here have to do with physical plane Couette flow and wall-bounded shear flows
in general, with large aspect ratios and physical spanwise–streamwise boundary
conditions. Indeed, the outstanding issue that must be addressed in future work is
the small-aspect cell periodicities imposed for computational efficiency. So far, most
computations of invariant solutions have focused on spanwise–streamwise (axial-
streamwise in case of the pipe flow) periodic cells barely large enough to allow for
sustained turbulence. Such small cells introduce dynamical artefacts such as lack
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of structural stability and cell-size dependence of the sustained turbulence states.
However, every solution that we find is also a solution of the infinite aspect-ratio
problem, i.e. a solution whose finite [Lx, 2, Lz] cell tiles the infinite three-dimensional
plane Couette flow. As we saw in § 6, under a continuous variation of spanwise length
Lz such solutions come in continuous families whose fundamental wavelengths reflect
the roll-and-streak instability scales observed in large-aspect systems such as figure 2.
Here we can draw the inspiration from pattern-formation theory, where the most
unstable wavelengths from a continuum of unstable solutions set the scales observed
in simulations.
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Cvitanović, P., Davidchack, R. L. & Siminos, E. 2009 On state space geometry of the
Kuramoto-Sivashinsky flow in a periodic domain. SIAM J. Appl. Dynam. Systems. To appear.
arXiv:0709.2944.

Dennis, J. E., Jr., & Schnabel, R. B. 1996 Numerical Methods for Unconstrained Optimization and
Nonlinear Equations . SIAM.

Duguet, Y., Pringle, C. C. T. & Kerswell, R. R. 2008 Relative periodic orbits in transitional pipe
flow. Phys. Fluids 20, 114102, arXiv:0807.2580.

Ehrenstein, U., Nagata, M. & Rincon, F. 2008 Two-dimensional nonlinear plane Poiseuille-Couette
flow homotopy revisited. Phys. Fluids 20, 064103-1–064103-4.

Faisst, H. & Eckhardt, B. 2003 travelling waves in pipe flow. Phys. Rev. Lett. 91, 224502.

Frisch, U. 1996 Turbulence. Cambridge University Press.

Gibson, J. F. 2008a Channelflow: a spectral Navier–Stokes simulator in C++. Tech Rep. Georgia
Institute of Technology. http://www.Channelflow.org.

Gibson, J. F. 2008b Movies of plane Couette. Tech Rep. Georgia Institute of Technology.
http://www.ChaosBook.org/tutorials.
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